24资源网

24资源分享网,分享资源,收集整理资源,有态度的分享资源网

C#开发学习人工智能的第一步

avatar 小四 2023-01-23 10:56 29次浏览 0 条评论 编程

脚本之家

你与百万开发者在一起

作者 | kiba518

出品 | 脚本之家(ID:jb51net)

前言

作为一个软件开发者,我们除了要学会复制,黏贴,还要学会调用API和优秀的开源类库。

也许有人说C#做不了人工智能,如果你认可这种想法,那说明你的思想还是狭隘的。

做不了人工智能的不是C#这种语言,而是你,我这种普通的程序员。

做人工智能需要一定的学历背景,一定的数学基础和公司专项的资源供给;而这种机缘小之又小,你我既然是普通的程序员,就必然与此无缘。

但在人工智能如日中天的当下,接触深度学习是必然会发生的事情,所以我们要做的就是,学会调用相关的类库。

现在,让我们迈出C#学习人工智能的第一步,通过调用Affdex来锁定图片中人物的面部,然后将其截取出来。

准备工作

首先,我们需要先访问官网下载Affdex的Sdk。

在官网找中找到下载Affdex的Sdk的地方也是个挺困难的事。。。所以下载链接如下:

下载Affdex_Sdk网址:

https://knowledge.affectiva.com/docs/getting-started-with-the-emotion-sdk-for-windows#section-2-import-into-your-application

进入网页后,向下拉动滚动条,找到到下图所示位置,点击Download进行下载。

下载完成后得到Sdk,如下图:

下面,我们双击进行安装,不过安装SDK有一些限制,需要预先安装NET Framework4.0和C++ 2015。如果电脑里已经安装了,就不必担心了;如果安装的是C++2015-2017这类型的,则需要卸载了,重新安装C++2015的版本,否则Affdex的SDK将安装失败。

安装完成后,我们去安装目录找到Affdex.dll,affdex-native.dll,tensorflow.dll三个文件,如下图:

我们先将它们复制出来,等待使用。

简单的介绍一下,这三个类库中,Affdex.dll是可以被C#项目直接引用的,而另外两个文件是Affdex.dll的依赖文件;也就是说,affdex-native.dll,tensorflow.dll需要在生成时,输出到运行目录下。

有经验的朋友想必已经发现了,这里有个类库名叫tensorflow.dll,tensorflow是什么啊?稍微百度一下大家就会了解了,它是专门来做深度学习的。

也就是说Affdex是支持深度学习的。

—————————————————————————————————-

现在我们来学习Affdex的使用。

首先我们新建一个WPF项目,然后引用Affdex.dll。

然后将项目的运行平台设置为64位,因为,这样处理图片的速度能快一点,如下图:

在Affdex中我们可以发现四个探头—VideoDetector,PhotoDetector,FrameDetector,CameraDetector。

在这里我们要处理的是图片,所以我们选择PhotoDetector,下面我们创建一个PhotoWindow.Xaml页面来使用PhotoDetector处理图片。

代码实现

首先,我们定义一个PhotoDetector的属性,用于处理图片。

然后我们在构造函数中对他进行实例化,代码如下:

privateAffdex.PhotoDetectorDetector{get;set;}

publicPhotoWindow()

{

InitializeComponent();

uint maxNumFaces =1;//最多识别图片中几张脸

Detector=newAffdex.PhotoDetector(maxNumFaces,Affdex.FaceDetectorMode.SMALL_FACES);

Detector.setImageListener(this);

Detector.setProcessStatusListener(this);

Detector.start();

}

在上述代码中可以看到,除了初始化PhotoDetector,我们还做了一个图片监听设置setImageListener,那么图片监听是干什么的呢?

很简单,图片被PhotoDetector处理完,我们需要知道图片处理结果呀,而这个图片监听正是是用来返回图片处理结果的。

可以看到图片监听设置的入参是this,也就是说,需要把图片的处理结果返回给当前页面。

如果就这样写是会编译报错的,会提示setImageListener的入参错误。

我们查看setImageListener的入参,发现它的入参是一个ImageListener接口,即,setImageListener的入参是一个要实现了ImageListener接口的类。

到这里,我们就都明白了,现在我们让当前PhotoWindow.xaml窗体继承接口ImageListener,并实现接口ImageListener内的方法。

publicpartialclassPhotoWindow:Window,Affdex.ImageListener

===========================================================================

publicvoid onImageCapture(Affdex.Frame frame)

{

}

publicvoid onImageResults(Dictionary<int,Face> faces,Affdex.Frame frame)

{

}

如上述代码所示,在我们实现的接口onImageResults里有两个参数:faces、frame。

其中faces是最重要的,这里包含Affdex分析图片的结果。

—————————————————————————————————-

现在,Affdex的配置代码已经写完了,我们可以把图片读取出来调用Affdex处理了。

publicPhotoWindow()

{

InitializeComponent();

uint maxNumFaces =1;//最多识别图片中几张脸

Detector=newAffdex.PhotoDetector(maxNumFaces,Affdex.FaceDetectorMode.SMALL_FACES);

Detector.setImageListener(this);

Detector.start();

byte[] bytes =FileHelper.FileToBytes(System.IO.Path.Combine(System.AppDomain.CurrentDomain.BaseDirectory,“timg.jpg”));

BitmapSource bitmapSource =ImageHelper.BytesToBitmapImage(bytes);

var w = bitmapSource.Width;

var h = bitmapSource.Height;

var stride = bitmapSource.Format.BitsPerPixel*(int)w /8;//计算Stride

byte[] byteList =newbyte[(int)h * stride];

bitmapSource.CopyPixels(byteList, stride,0);

Affdex.Frame frame =newAffdex.Frame((int)w,(int)h, byteList,Affdex.Frame.COLOR_FORMAT.BGRA);

Detector.process(frame);

}

如上述代码所示,我们在启动了Detector后,读取了一个人物图片,然后把人物图片的像素数组解析出来,生成一个Frame;这个Frame是Affdex的类,用于保存图像数据信息。

最后,我们把生成的Frame对象,扔给Detecotor的Process方法处理。

Detecotor处理完成后,会触发onImageResults方法。

在onImageResults方法里,入参faces包含了处理结果。

现在我们使用faces里的内容,来定位图片中人物面部的位置。

publicvoid onImageResults(Dictionary<int,Face> faces,Affdex.Frame frame)

{

Face face =null;

if(faces !=null&& faces.Values!=null&& faces.Values.Count()>0)

{

face = faces.Values.First();//因为我们的Detector只识别了一个脸,所以这里最多只有一个数据

}

int top =(int)face.FeaturePoints.Min(r => r.X);

int left =(int)face.FeaturePoints.Min(r => r.Y);

int bottom =(int)face.FeaturePoints.Max(r => r.X);

int right =(int)face.FeaturePoints.Max(r => r.Y);

ImageHelper.cutPicture(System.IO.Path.Combine(System.AppDomain.CurrentDomain.BaseDirectory,“timg.jpg”),

left, top, right , bottom top);

}

如上述代码所示,我们在onImageResults里做了【最简单】人物面部坐标定位,并进行了剪切。

处理结果如下图所示:

结语

事实上,上面介绍的只是Affdex最基础调用,而且,这里并没有使用到深度学习的内容,只是简单的扫描和分析。

想要使用深度学习的内容还需要进一步学习该开源控件,不过,万事开头难,我们现在已经迈出了第一步。

—————————————————————————————————-

到此C#开发学习人工智能的第一步就完成了。

代码已经传到Github上了,欢迎大家下载。

Github地址:https://github.com/kiba518/WpfAffdex

本文作者:kiba518,全栈.Net软件工程师

声明:本文为 脚本之家专栏作者 投稿,未经允许请勿转载。

写的不错?赞赏一下

长按扫码赞赏我

●  2019 编程语言排行榜:Java、Python 龙争虎斗!PHP 屹立不倒!

● 脚本之家粉丝福利,请查看!

●  那些裸辞的程序员,都干嘛去了?

● 超实用:14种性能监控与负载测试工具

● 作为程序员,我在电脑上都装过哪些 Chrome 插件?

               
发表评论